Public Member Functions | Private Attributes | List of all members
oomph::StraightLine Class Reference

#include <geom_objects.h>

+ Inheritance diagram for oomph::StraightLine:

Public Member Functions

 StraightLine (const Vector< Data * > &geom_data_pt)
 Constructor: One item of geometric data: More...
 
 StraightLine (const double &height)
 Constructor: Pass height (pinned by default) More...
 
 StraightLine (const StraightLine &dummy)
 Broken copy constructor. More...
 
void operator= (const StraightLine &)
 Broken assignment operator. More...
 
 ~StraightLine ()
 Destructor: Clean up if necessary. More...
 
void position (const Vector< double > &zeta, Vector< double > &r) const
 Position Vector at Lagrangian coordinate zeta. More...
 
void position (const unsigned &t, const Vector< double > &zeta, Vector< double > &r) const
 Parametrised position on object: r(zeta). Evaluated at previous timestep. t=0: current time; t>0: previous timestep. More...
 
virtual void dposition (const Vector< double > &zeta, DenseMatrix< double > &drdzeta) const
 Derivative of position Vector w.r.t. to coordinates: $ \frac{dR_i}{d \zeta_\alpha}$ = drdzeta(alpha,i). Evaluated at current time. More...
 
virtual void d2position (const Vector< double > &zeta, RankThreeTensor< double > &ddrdzeta) const
 2nd derivative of position Vector w.r.t. to coordinates: $ \frac{d^2R_i}{d \zeta_\alpha d \zeta_\beta}$ = ddrdzeta(alpha,beta,i). Evaluated at current time. More...
 
virtual void d2position (const Vector< double > &zeta, Vector< double > &r, DenseMatrix< double > &drdzeta, RankThreeTensor< double > &ddrdzeta) const
 Posn Vector and its 1st & 2nd derivatives w.r.t. to coordinates: $ \frac{dR_i}{d \zeta_\alpha}$ = drdzeta(alpha,i). $ \frac{d^2R_i}{d \zeta_\alpha d \zeta_\beta}$ = ddrdzeta(alpha,beta,i). Evaluated at current time. More...
 
unsigned ngeom_data () const
 How many items of Data does the shape of the object depend on? More...
 
Datageom_data_pt (const unsigned &j)
 Return pointer to the j-th Data item that the object's shape depends on. More...
 
- Public Member Functions inherited from oomph::GeomObject
 GeomObject ()
 Default constructor. More...
 
 GeomObject (const unsigned &ndim)
 Constructor: Pass dimension of geometric object (# of Eulerian coords = # of Lagrangian coords; no time history available/needed) More...
 
 GeomObject (const unsigned &nlagrangian, const unsigned &ndim)
 Constructor: pass # of Eulerian and Lagrangian coordinates. No time history available/needed. More...
 
 GeomObject (const unsigned &nlagrangian, const unsigned &ndim, TimeStepper *time_stepper_pt)
 Constructor: pass # of Eulerian and Lagrangian coordinates and pointer to time-stepper which is used to handle the position at previous timesteps and allows the evaluation of veloc/acceleration etc. in cases where the GeomData varies with time. More...
 
 GeomObject (const GeomObject &dummy)
 Broken copy constructor. More...
 
void operator= (const GeomObject &)
 Broken assignment operator. More...
 
virtual ~GeomObject ()
 (Empty) destructor More...
 
unsigned nlagrangian () const
 Access function to # of Lagrangian coordinates. More...
 
unsigned ndim () const
 Access function to # of Eulerian coordinates. More...
 
void set_nlagrangian_and_ndim (const unsigned &n_lagrangian, const unsigned &n_dim)
 Set # of Lagrangian and Eulerian coordinates. More...
 
TimeStepper *& time_stepper_pt ()
 Access function for pointer to time stepper: Null if object is not time-dependent. More...
 
TimeSteppertime_stepper_pt () const
 Access function for pointer to time stepper: Null if object is not time-dependent. Const version. More...
 
virtual void dposition_dt (const Vector< double > &zeta, const unsigned &j, Vector< double > &drdt)
 j-th time-derivative on object at current time: $ \frac{d^{j} r(\zeta)}{dt^j} $. More...
 
virtual void locate_zeta (const Vector< double > &zeta, GeomObject *&sub_geom_object_pt, Vector< double > &s, const bool &use_coordinate_as_initial_guess=false)
 A geometric object may be composed of may sub-objects (e.g. a finite-element representation of a boundary). In order to implement sparse update functions, it is necessary to know the sub-object and local coordinate within that sub-object at a given intrinsic coordinate, zeta. Note that only one sub-object can "cover" any given intrinsic position. If the position is at an "interface" between sub-objects, either one can be returned. The default implementation merely returns, the pointer to the "entire" GeomObject and the coordinate, zeta The optional boolean flag only applies if a Newton method is used to find the value of zeta, and if true the value of the coordinate s is used as the initial guess for the method. If the flag is false (the default) a value of s=0 is used as the initial guess. More...
 
virtual void interpolated_zeta (const Vector< double > &s, Vector< double > &zeta) const
 A geometric object may be composed of many sub-objects each with their own local coordinate. This function returns the "global" intrinsic coordinate zeta (within the compound object), at a given local coordinate s (i.e. the intrinsic coordinate of the sub-GeomObject. In simple (non-compound) GeomObjects, the local intrinsic coordinate is the global intrinsic coordinate and so the function merely returns s. To make it less likely that the default implementation is called in error (because it is not overloaded in a derived GeomObject where the default is not appropriate, we do at least check that s and zeta have the same size if called in PARANOID mode. More...
 

Private Attributes

Vector< Data * > Geom_data_pt
 Vector of pointers to Data items that affects the object's shape. More...
 
bool Must_clean_up
 Do I need to clean up? More...
 

Additional Inherited Members

- Protected Attributes inherited from oomph::GeomObject
unsigned NLagrangian
 Number of Lagrangian (intrinsic) coordinates. More...
 
unsigned Ndim
 Number of Eulerian coordinates. More...
 
TimeStepperGeom_object_time_stepper_pt
 Timestepper (used to handle access to geometry at previous timesteps) More...
 

Detailed Description

Steady, straight 1D line in 2D space

\[ x = \zeta \]

\[ y = H \]

Definition at line 429 of file geom_objects.h.

Constructor & Destructor Documentation

oomph::StraightLine::StraightLine ( const Vector< Data * > &  geom_data_pt)
inline

Constructor: One item of geometric data:

Geom_data_pt[0]->value(0) = height

Definition at line 438 of file geom_objects.h.

References Geom_data_pt, and Must_clean_up.

oomph::StraightLine::StraightLine ( const double &  height)
inline

Constructor: Pass height (pinned by default)

Definition at line 466 of file geom_objects.h.

References Geom_data_pt, and Must_clean_up.

oomph::StraightLine::StraightLine ( const StraightLine dummy)
inline

Broken copy constructor.

Definition at line 487 of file geom_objects.h.

References oomph::BrokenCopy::broken_copy().

oomph::StraightLine::~StraightLine ( )
inline

Destructor: Clean up if necessary.

Definition at line 500 of file geom_objects.h.

References Geom_data_pt, and Must_clean_up.

Member Function Documentation

virtual void oomph::StraightLine::d2position ( const Vector< double > &  zeta,
RankThreeTensor< double > &  ddrdzeta 
) const
inlinevirtual

2nd derivative of position Vector w.r.t. to coordinates: $ \frac{d^2R_i}{d \zeta_\alpha d \zeta_\beta}$ = ddrdzeta(alpha,beta,i). Evaluated at current time.

Reimplemented from oomph::GeomObject.

Definition at line 561 of file geom_objects.h.

virtual void oomph::StraightLine::d2position ( const Vector< double > &  zeta,
Vector< double > &  r,
DenseMatrix< double > &  drdzeta,
RankThreeTensor< double > &  ddrdzeta 
) const
inlinevirtual

Posn Vector and its 1st & 2nd derivatives w.r.t. to coordinates: $ \frac{dR_i}{d \zeta_\alpha}$ = drdzeta(alpha,i). $ \frac{d^2R_i}{d \zeta_\alpha d \zeta_\beta}$ = ddrdzeta(alpha,beta,i). Evaluated at current time.

Reimplemented from oomph::GeomObject.

Definition at line 576 of file geom_objects.h.

References Geom_data_pt.

virtual void oomph::StraightLine::dposition ( const Vector< double > &  zeta,
DenseMatrix< double > &  drdzeta 
) const
inlinevirtual

Derivative of position Vector w.r.t. to coordinates: $ \frac{dR_i}{d \zeta_\alpha}$ = drdzeta(alpha,i). Evaluated at current time.

Reimplemented from oomph::GeomObject.

Definition at line 549 of file geom_objects.h.

Data* oomph::StraightLine::geom_data_pt ( const unsigned &  j)
inlinevirtual

Return pointer to the j-th Data item that the object's shape depends on.

Reimplemented from oomph::GeomObject.

Definition at line 599 of file geom_objects.h.

References Geom_data_pt.

unsigned oomph::StraightLine::ngeom_data ( ) const
inlinevirtual

How many items of Data does the shape of the object depend on?

Reimplemented from oomph::GeomObject.

Definition at line 595 of file geom_objects.h.

References Geom_data_pt.

void oomph::StraightLine::operator= ( const StraightLine )
inline

Broken assignment operator.

Definition at line 493 of file geom_objects.h.

References oomph::BrokenCopy::broken_assign().

void oomph::StraightLine::position ( const Vector< double > &  zeta,
Vector< double > &  r 
) const
inlinevirtual

Position Vector at Lagrangian coordinate zeta.

Implements oomph::GeomObject.

Definition at line 512 of file geom_objects.h.

References Geom_data_pt.

void oomph::StraightLine::position ( const unsigned &  t,
const Vector< double > &  zeta,
Vector< double > &  r 
) const
inlinevirtual

Parametrised position on object: r(zeta). Evaluated at previous timestep. t=0: current time; t>0: previous timestep.

Reimplemented from oomph::GeomObject.

Definition at line 523 of file geom_objects.h.

References Geom_data_pt, and oomph::GeomObject::time_stepper_pt().

Member Data Documentation

Vector<Data*> oomph::StraightLine::Geom_data_pt
private

Vector of pointers to Data items that affects the object's shape.

Definition at line 604 of file geom_objects.h.

Referenced by d2position(), geom_data_pt(), ngeom_data(), position(), StraightLine(), and ~StraightLine().

bool oomph::StraightLine::Must_clean_up
private

Do I need to clean up?

Definition at line 607 of file geom_objects.h.

Referenced by StraightLine(), and ~StraightLine().


The documentation for this class was generated from the following file: